DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

نویسندگان

  • Pyung Sun Cho
  • Han Kyu Lee
  • Sang Hoon Lee
  • Jay Zoon Im
  • Sung Jun Jung
چکیده

The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphine-3beta-D-glucuronide suppresses inhibitory synaptic transmission in rat substantia gelatinosa.

High doses of intrathecally applied morphine or morphine-3beta-D-glucuronide (M3G) produce allodynia and hyperalgesia. Whole-cell patch-clamp recordings were made from substantia gelatinosa neurons in transverse slices of adult rat lumbar spinal cord to compare the actions of M3G with those of the mu-opioid agonist, DAMGO ([D-Ala(2),N-Met-Phe(4),Gly-ol(5)]-enkephalin), and the ORL(1) agonist, n...

متن کامل

Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons.

Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J. Neurophysiol. 80: 2954-2962, 1998. Using tight-seal, whole cell recordings from isolated transverse slices of hamster and rat spinal cord, we investigated the effects of the mu-opioid agonist (-Ala2, N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO) on the membrane potential and...

متن کامل

Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat.

Ionic conductances underlying excitability in tonically firing neurons (TFNs) from substantia gelatinosa (SG) were studied by the patch-clamp method in rat spinal cord slices. Ca(2+)-dependent K(+) (K(CA)) conductance sensitive to apamin was found to prolong the interspike intervals and stabilize firing evoked by a sustained membrane depolarization. Suppression of Ca(2+) and K(CA) currents, how...

متن کامل

Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons

BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary af...

متن کامل

mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat.

The actions of opioid agonists in the substantia gelatinosa are important for their antinociceptive effects. In order to identify possible mechanisms underlying opioid actions in the substantia gelatinosa, the pre- and postsynaptic effects of opioid agonists on neurons of the substantia gelatinosa were examined using a brain slice preparation. Intracellular recordings were made from neurons of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016